Description
Hexagon is a microservices toolkit written in Kotlin. Its purpose is to ease the building of services (Web applications, APIs or queue consumers) that run inside a cloud platform.
Hexagon alternatives and similar libraries
Based on the "REST Frameworks" category.
Alternatively, view hexagon alternatives based on common mentions on social networks and blogs.
-
Dropwizard
Opinionated framework for setting up modern web applications with Jetty, Jackson, Jersey and Metrics. -
rest.li
Framework for building robust, scalable RESTful architectures using type-safe bindings and asynchronous, non-blocking IO with an end-to-end developer workflow that promotes clean practices, uniform interface design and consistent data modeling. -
Swagger
Swagger is a specification and complete framework implementation for describing, producing, consuming, and visualizing RESTful web services. -
Rapidoid
A simple, secure and extremely fast framework consisting of embedded HTTP server, GUI components and dependency injection. -
Microserver
A convenient extensible Microservices plugin system for Spring & Spring Boot, with over 30 plugins and growing, that supports both micro-monolith and pure microservices styles. -
Restlet Framework
Pioneering framework with powerful routing and filtering capabilities, unified client and server API. -
Crnk
Implementation of the JSON API specification to build resource-oriented REST endpoints with sorting, filtering, paging, linking, object graphs, type-safety, bulk updates, integrations and more. -
StubbornJava
Unconventional Java code for building web servers / services without a framework. Think dropwizard but as a seed project instead of a framework. If this project had a theme it would be break the rules but be mindful of your decisions. -
Restler
Automatically generates a web service client at run time by analyzing its annotated Spring controller interface
Get performance insights in less than 4 minutes
* Code Quality Rankings and insights are calculated and provided by Lumnify.
They vary from L1 to L5 with "L5" being the highest. Visit our partner's website for more details.
Do you think we are missing an alternative of Hexagon or a related project?
Popular Comparisons
README
Hexagon
The atoms of your platform
Home Site | Quick Start | Developer Guide
What is Hexagon
Hexagon is a microservices' toolkit (not a framework) written in Kotlin. Its purpose is to ease the building of server applications (Web applications, APIs or queue consumers) that run inside a cloud platform.
The Hexagon Toolkit provides several libraries to build server applications. These libraries provide single standalone features and are referred to as "Ports".
The main ports are:
- The HTTP server: supports HTTPS, HTTP/2, mutual TLS, static files (serve and upload), forms processing, cookies, sessions, CORS and more.
- The HTTP client: which supports mutual TLS, HTTP/2 and cookies among other things.
Each of these features or ports may have different implementations called "Adapters".
Hexagon is designed to fit in applications that conform to the [Hexagonal Architecture] (also called Clean Architecture or Ports and Adapters Architecture). Also, its design principles also fits in this architecture.
The Hexagon's goals and design principles are:
Put you in Charge: There is no code generation, no runtime annotation processing, no classpath based logic, and no implicit behaviour. You control your tools, not the other way around.
Modular: Each feature (Port) or adapter is isolated in its own module. Use only the modules you need without carrying unneeded dependencies.
Pluggable Adapters: Every Port may have many implementations (Adapters) using different technologies. You can swap adapters without changing the application code.
Batteries Included: It contains all the required pieces to make production-grade applications: settings management, serialization, dependency injection and build helpers.
Kotlin First: Take full advantage of Kotlin instead of just calling Java code from Kotlin. The library is coded in Kotlin for coding with Kotlin. No strings attached to Java (as a Language).
Properly Tested: The project's coverage is checked in every Pull Request. It is also stress-tested at TechEmpower Frameworks Benchmark.
For more information check the Quick Start Guide or the Developer Guide.
Simple HTTP service
You can clone a starter project (Gradle Starter or Maven Starter). Or you can create a project from scratch following these steps:
In Gradle. Import it inside
build.gradle
:repositories { mavenCentral() } implementation("com.hexagonkt:http_server_jetty:$hexagonVersion")
In Maven. Declare the dependency in
pom.xml
:<dependency> <groupId>com.hexagonkt</groupId> <artifactId>http_server_jetty</artifactId> <version>$hexagonVersion</version> </dependency>
- Write the code in the
src/main/kotlin/Hello.kt
file:
// hello
package com.hexagonkt.http.server.jetty
import com.hexagonkt.http.server.Server
lateinit var server: Server
fun main() {
server = Server(JettyServletAdapter()) {
get("/hello") {
ok("Hello World!")
}
}
server.start()
}
// hello
- Run the service and view the results at: http://localhost:2010/hello/world
Examples
Books Example
A simple CRUD example showing how to manage book resources. Here you can check the [full test](port_http_server/src/test/kotlin/examples/BooksTest.kt).
// books
data class Book(val author: String, val title: String)
private val books: MutableMap<Int, Book> = linkedMapOf(
100 to Book("Miguel de Cervantes", "Don Quixote"),
101 to Book("William Shakespeare", "Hamlet"),
102 to Book("Homer", "The Odyssey")
)
val server: Server = Server(adapter) {
post("/books") {
// Require fails if parameter does not exists
val author = queryParameters.require("author")
val title = queryParameters.require("title")
val id = (books.keys.max() ?: 0) + 1
books += id to Book(author, title)
send(201, id)
}
get("/books/{id}") {
val bookId = pathParameters.require("id").toInt()
val book = books[bookId]
if (book != null)
// ok() is a shortcut to send(200)
ok("Title: ${book.title}, Author: ${book.author}")
else
send(404, "Book not found")
}
put("/books/{id}") {
val bookId = pathParameters.require("id").toInt()
val book = books[bookId]
if (book != null) {
books += bookId to book.copy(
author = queryParameters["author"] ?: book.author,
title = queryParameters["title"] ?: book.title
)
ok("Book with id '$bookId' updated")
}
else {
send(404, "Book not found")
}
}
delete("/books/{id}") {
val bookId = pathParameters.require("id").toInt()
val book = books[bookId]
books -= bookId
if (book != null)
ok("Book with id '$bookId' deleted")
else
send(404, "Book not found")
}
// Matches path's requests with *any* HTTP method as a fallback (return 404 instead 405)
any("/books/{id}") { send(405) }
get("/books") { ok(books.keys.joinToString(" ", transform = Int::toString)) }
}
// books
Session Example
Example showing how to use sessions. Here you can check the [full test](port_http_server/src/test/kotlin/examples/SessionTest.kt).
// session
val server: Server = Server(adapter) {
path("/session") {
get("/id") { ok(session.id ?: "null") }
get("/access") { ok(session.lastAccessedTime?.toString() ?: "null") }
get("/new") { ok(session.isNew()) }
path("/inactive") {
get { ok(session.maxInactiveInterval ?: "null") }
put("/{time}") {
session.maxInactiveInterval = pathParameters.require("time").toInt()
}
}
get("/creation") { ok(session.creationTime ?: "null") }
post("/invalidate") { session.invalidate() }
path("/{key}") {
put("/{value}") {
session.set(pathParameters.require("key"), pathParameters.require("value"))
}
get { ok(session.get(pathParameters.require("key")).toString()) }
delete { session.remove(pathParameters.require("key")) }
}
get {
val attributes = session.attributes
val attributeTexts = attributes.entries.map { it.key + " : " + it.value }
response.headers["attributes"] = attributeTexts.joinToString(", ")
response.headers["attribute values"] = attributes.values.joinToString(", ")
response.headers["attribute names"] = attributes.keys.joinToString(", ")
response.headers["creation"] = session.creationTime.toString()
response.headers["id"] = session.id ?: ""
response.headers["last access"] = session.lastAccessedTime.toString()
response.status = 200
}
}
}
// session
Error Handling Example
Code to show how to handle callback exceptions and HTTP error codes. Here you can check the [full test](port_http_server/src/test/kotlin/examples/ErrorsTest.kt).
// errors
class CustomException : IllegalArgumentException()
val server: Server = Server(adapter) {
error(UnsupportedOperationException::class) {
response.headers["error"] = it.message ?: it.javaClass.name
send(599, "Unsupported")
}
error(IllegalArgumentException::class) {
response.headers["runtimeError"] = it.message ?: it.javaClass.name
send(598, "Runtime")
}
// Catching `Exception` handles any unhandled exception before (it has to be the last)
error(Exception::class) { send(500, "Root handler") }
// It is possible to execute a handler upon a given status code before returning
error(588) { send(578, "588 -> 578") }
get("/exception") { throw UnsupportedOperationException("error message") }
get("/baseException") { throw CustomException() }
get("/unhandledException") { error("error message") }
get("/halt") { halt("halted") }
get("/588") { halt(588) }
}
// errors
Filters Example
This example shows how to add filters before and after route execution. Here you can check the [full test](port_http_server/src/test/kotlin/examples/FiltersTest.kt).
// filters
private val users: Map<String, String> = mapOf(
"Turing" to "London",
"Dijkstra" to "Rotterdam"
)
private val server: Server = Server(adapter) {
before { attributes["start"] = nanoTime() }
before("/protected/*") {
val authorization = request.headers["Authorization"] ?: halt(401, "Unauthorized")
val credentials = authorization.removePrefix("Basic ")
val userPassword = String(Base64.getDecoder().decode(credentials)).split(":")
// Parameters set in call attributes are accessible in other filters and routes
attributes["username"] = userPassword[0]
attributes["password"] = userPassword[1]
}
// All matching filters are run in order unless call is halted
before("/protected/*") {
if(users[attributes["username"]] != attributes["password"])
halt(403, "Forbidden")
}
get("/protected/hi") { ok("Hello ${attributes["username"]}!") }
// After filters are ran even if request was halted before
after { response.headers["time"] = nanoTime() - attributes["start"] as Long }
}
// filters
Files Example
The following code shows how to serve resources and receive files. Here you can check the full test.
// files
private val server: Server = Server(adapter) {
path("/static") {
get("/files/*", Resource("assets")) // Serve `assets` resources on `/html/*`
get("/resources/*", File(directory)) // Serve `test` folder on `/pub/*`
}
get("/html/*", Resource("assets")) // Serve `assets` resources on `/html/*`
get("/pub/*", File(directory)) // Serve `test` folder on `/pub/*`
get(Resource("public")) // Serve `public` resources folder on `/*`
post("/multipart") { ok(request.parts.keys.joinToString(":")) }
post("/file") {
val part = request.parts.values.first()
val content = part.inputStream.reader().readText()
ok(content)
}
post("/form") {
fun serializeMap(map: Map<String, List<String>>): List<String> = listOf(
map.map { "${it.key}:${it.value.joinToString(",")}}" }.joinToString("\n")
)
val queryParams = serializeMap(queryParametersValues)
val formParams = serializeMap(formParametersValues)
response.headersValues["queryParams"] = queryParams
response.headersValues["formParams"] = formParams
}
}
// files
You can check more sample projects and snippets at the examples page.
Thanks
This project is supported by:
Status
The toolkit is properly tested. This is the coverage report:
Performance is not the primary goal, but it is taken seriously. You can check performance numbers in the TechEmpower Web Framework Benchmarks.
Contribute
If you like this project and want to support it, the easiest way is to give it a star :v:.
If you feel like you can do more. You can contribute to the project in different ways:
- By using it and spreading the word.
- Giving feedback by Twitter or Slack.
- Requesting new features or submitting bugs.
- Voting for the features you want in the issue tracker (using reactions).
- And... Drum roll... Submitting [code or documentation][contributing].
To know what issues are currently open and be aware of the next features you can check the Project Board and the Organization Board at GitHub.
You can ask any question, suggestion or complaint at the project's Slack channel. You can be up to date of project's news following @hexagon_kt on Twitter.
Thanks to all project's contributors!
License
The project is licensed under the [MIT License]. This license lets you use the source for free or commercial purposes as long as you provide attribution and don’t hold any project member liable.
*Note that all licence references and agreements mentioned in the Hexagon README section above
are relevant to that project's source code only.